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Abstract

This paper presents a procedure for locating variability in structural stiffness. For some types of
structure, this variability is directly related to manufacturing defects and/or in-service damage. Unlike
many published damage detection methods, the procedure presented here uses only data obtained from the
damaged structure. Baseline data and theoretical models of the undamaged structure are not used during
the analysis presented here. The procedure locates regions in a structure where the stiffness varies.
Providing it is known that the structure, in its undamaged state, is homogeneous with respect to stiffness,
the procedure will detect the areas of inhomogeneity that are caused by the incipient damage. For non-
homogeneous structures, some knowledge of the structural details (for example, engineering drawings or a
baseline test) is required in order to discriminate damage. The procedure is a two-dimensional
generalization of a previously published one-dimensional gapped smoothing method, whereby local
features in vibration curvature shapes are extracted using a localized curve fit (i.e., smoothing). A
variability index is generated for each test point on the structure. Increased variability is due either to
structural stiffness features or damage. A statistical treatment of the indices enables discrimination of areas
with significant stiffness variability. Providing the damaged areas are sufficiently small compared to the
total surface area, their indices will be statistical outliers. The procedure can either analyze mode shape
data, or frequency dependent operating displacement shape data.
The procedure is demonstrated with a finite element model of a plate, and experiments on composite

plates with deliberately induced multiple delaminations. Finally, the method is demonstrated on data taken
from a large composite hull structure. In all cases the procedure successfully located the damaged regions.
r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Structures with manufacturing defects and service damage show different dynamic responses
from the equivalent structure without defects or damage. Vibration techniques offer the potential
for locating both global and local defects in large-scale composite structures, for quality
assurance/quality control (QA/QC) and non-destructive inspection (NDI).
Significant work has been done in localizing damage with vibration techniques [1]. Many of

these techniques use modal parameters such as natural frequencies, damping factors, and mode
shapes. Natural frequency information is used for the detection of damage [2] as well as
characterization of debonding damage [3], delaminations [4], and elastic constant determination
[5]. It may be difficult to use damping factors to detect damage because of significant
measurement uncertainties, and localization is even more difficult [5,6]. Mode shape data has been
used for local damage detection by many researchers [7–11]. However, these methods have
difficulty in making the transition from research to practice because useful information on
damage is lost during data processing (e.g., modal analysis) [12] or because linear models cannot
clearly explain non-linear features such as crack opening and closing or crack propagation [13].
Non-linear system models are extensively studied to overcome the linear models. Depth of surface
cracks in linear structures is estimated in terms of changes in frequencies and modes [14]. The
curvature of the mode shape is increasingly used for the local damage detection because the
curvature is proportional to the surface strain that is sensitive to the local changes in stiffness [7].
Pandey et al. [8] compared the curvatures of the mode shapes between the undamaged and
damaged structures.
Other techniques use frequency response functions (FRF) [15,16] or operating deflection shapes

[12] for local damage detection. System identification techniques [15] are used to obtain the
eigenvalues and eigenvectors from the FRF, from which the mass and stiffness matrix are
determined to correlate with the damage location. The operating curvature shapes have also been
developed for local damage detections [12,16]. These non-resonant methods increase sensitivity
for the location of damage when compared to methods based solely on resonant parameters
(modal parameters). This is because non-resonant methods use information from all of the
broadband frequencies, and also avoid the errors introduced during a modal analysis data
reduction. In order to detect damage, Sampaio [16] directly subtracted the values of the operating
curvature shape of the damaged structure from that of the undamaged structure.
Most of these techniques mentioned require either experimental baseline data or a

mathematical model of the undamaged structure. As an example, Stubbs et al. [10] developed a
damage localization method for a continuous beam, which does not require experimental baseline
modal parameters. However, a finite element model was used to simulate the response of the
undamaged structure to replace the baseline data from the undamaged structure. The parameters
of the finite element model for the undamaged structure were obtained from the dynamic response
of the damaged structure by employing a system identification method. Cornwell et al. [11]
extended the one-dimensional strain energy method by Stubbs et al. [10] to two-dimensional
structures, but their approach still requires baseline data from the undamaged structure.
Ratcliffe [7] developed the gapped smoothing method for the one-dimensional beam, which

operates solely on data obtained from the damaged structure to locate structural stiffness
variability. At first, only the resonant data such as mode shape data were used to detect the local
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stiffness reduction in a notched steel beam [7]. Ratcliffe successfully used this approach to locate
delamination in composite beams [9]. Later, broadband data were employed by using the
frequency-dependent operating curvature shapes obtained from the FRF data. This approach
significantly increased the sensitivity of the identification of structural variability [12]. Yoon et al.
[17] developed the global smoothing method for the one-dimensional beam, which uses mode
shape data and mathematical mode shape functions of the beams for the calculation of the
structural irregularity index. This method showed improved performance over the gapped
smoothing method by eliminating the smearing effect on the edges of the damage and the
significant noise present in the original algorithm at the boundary edges of the structure. More
recently, Yoon’s method was refined to improve sensitivity (relative to approaches based on mode
shape data) by superimposing the mathematical mode shape functions, enabling the use of
frequency-dependent operating curvature shape data [18].
The present study extends the one-dimensional gapped smoothing method (1-D GSM) [7,12] to

the two-dimensional gapped smoothing method (2-D GSM). In order to locate structural
variability, these methods do not require baseline data from a presumably undamaged structure,
since they predominantly identify regions of the structure where there is stiffness variability. When
it is known that the structure is intended to be uniform and homogeneous, features located by the
1-D GSM and 2-D GSM can be attributed directly to damage or manufacturing defects. When it
is possible to test a structure before and after some damage-causing incident, the damage can be
identified by looking at the change in the structural irregularity indices developed by the
procedures presented here. While this aspect of damage detection has proved to be most successful
in the testing of large composite structures, this characteristic is not further addressed in this
paper. The developed 2-D GSMmethod uses either broadband or resonant (modal) data obtained
from any plate-like structure to generate structural irregularity indices. As described later, the
irregularity is a stiffness variability. These irregularity indices are statistically treated to assess the
damage potential with respect to a level of significance. The 2-D GSM is validated with finite
element analysis (FEA) using mode shape data from a plate. It is experimentally verified with
experiments on composite plates, in which both the mode shape and broadband methods are used.
Finally, the results of a field test of a large composite hull structure are presented. The 2-D GSM
successfully identified the size and locations of defects in all cases.

2. Theory

In this section, damage detection methods that use curvatures of both mode shape and
broadband operating deflection shape data are presented to provide the theoretical background
for the 2-D GSM.

2.1. Curvature subtraction method using mode shape data

Local stiffness changes in a beam result in a mode shape that has a local change in slope. Since
the curvature mode shapes are related to the flexural stiffness of beam cross-sections [8], the
change in curvature is used in this paper to locate local stiffness irregularity. If the structure is
intended to be homogeneous, this stiffness irregularity relates directly to local damage or other
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stiffness defect. The curvature ðf00
i Þ at the ith test grid point on the beam can be obtained to a

Bachmann-Landau order of magnitude of Oðh2Þ with the central difference approximation

f00
i ¼ ðfiþ1 þ fi�1 � 2fiÞ=h2; ð1Þ

where fi is the mode shape obtained at the ith grid point and h is the uniform separation of the
test grid. If damage is severe, there is a noticeable anomaly in the curvature of mode shapes at the
location of damage. When the damage is less severe, further processing is needed to detect the
curvature feature. Pandey et al. [8] directly obtained a damage index ðdiÞ by calculating the
absolute differences between the curvatures of the damaged and undamaged structures as

di ¼ jf00
i;d � f00

i;uj; ð2Þ

where f00
i;d is the curvature at the ith grid point from the damaged structure, and f00

i;u is the
curvature from the undamaged structure. The damage index increases as the severity of damage
increases.

2.2. One-dimensional gapped smoothing method (1-D GSM) using mode shape data

The 1-D GSM predominantly locates variations in structural stiffness. It uses mode shapes (8)
obtained from the presumably damaged structure. These shapes are converted to curvature, and
then processed to extract the anomaly in curvature coincident with the damage site. This
processing is to fit a gapped cubic polynomial to the curvature mode shape. A structural
irregularity index is then calculated as the difference between the measured shape and the
calculated polynomial. Fig. 1 shows how to calculate the structural irregularity index using 1-D
GSM. The continuous line represents the measured curvature mode shape, and the dotted line
shows the cubic polynomial function at the ith grid point ðCiÞ; which is defined as

Ci ¼ a0 þ a1xi þ a2x
2
i þ a3x

3
i ; ð3Þ

where xi is distance between the ith grid point and the beam end. The coefficients a0; a1; a2; and a3
are determined explicitly using the neighboring curvatures from the damaged structure: f00

i�2; f
00
i�1;

f00
iþ1; and f00

iþ2 (the curvatures at the black marks as shown in Fig. 1). For the first and last two
grid points the curvatures are calculated using four-point backward/forward looking finite
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Fig. 1. Calculation of the structural irregularity index with the one-dimensional gapped smoothing method (the open

circular mark shows the gapped point and the black circular marks show the used data points for the curvature curve

smoothing).
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difference approximation that maintain a Bachmann-Landau order of magnitude of Oðh2Þ [11].
Then, the structural irregularity index is obtained as the squared difference between the cubic
polynomial function and the curvature from the structure as

di ¼ ðf00
i;d � CiÞ

2: ð4Þ

The structural irregularity indices are generally larger for parts of the structure with more stiffness
variability (e.g., damaged locations or other localized structural stiffness features). However, there
can be problems when damage exists at a node in the curvature mode shape. To overcome this
problem the irregularity indices can be averaged for a number of analysis modes.

2.3. One-dimensional gapped smoothing method using operating deflection shape data

The 1-D GSM can also be used when the deflection shape is an operating deflection shape,
rather than a mode shape [12]. The operating deflection shape is obtained by taking the complex
values of the FRFs ðcðoÞÞ at the selected frequency. The algorithm has to be modified to accept
complex data. This is achieved by applying the 1-D GSM separately to the real and imaginary
parts of the operating displacement shape. That is, the real and imaginary parts of the
displacement shape are separately converted to curvature shapes, and the gapped smoothing
algorithm is applied separately to the real and imaginary curvature shapes. The structural
irregularity indices are calculated from a modified Eq. (4):

di ¼ ðc00
i;d � CiÞ

2
REAL þ ðc00

i;d � CiÞ
2
IMAGINARY : ð5Þ

The above procedure can be applied to the operating deflection shape for a single frequency.
However, it is better to apply the procedure to broadband FRF data, and frequency average the
results, with the maximum number of operating deflection shapes (and thus, analysis frequencies)
being limited to the number of spectral lines in each FRF. Operating deflection shapes and the
resulting structural irregularity indices have a large dynamic range, and without correction this
would cause index values obtained from data near resonance to dominate. This would result in a
reduced effectiveness of the off-resonant data in the identification procedure. It has been noted by
many authors that vibration shapes are insensitive to even quite large amounts of damage.
Therefore the dynamic range problem is addressed by normalizing each operating deflection shape
prior to its differentiation to curvature. The advantages of using broadband data include a
significant increase in sensitivity when compared to modal methods, as well as the elimination of
the need to extract modal parameters from the measured FRF data.

2.4. Two-dimensional gapped smoothing method (2-D GSM)

The two-dimensional gapped smoothing method defined in this paper uses a gapped surface-
smoothing algorithm instead of the gapped line-smoothing algorithm in the 1-D GSM previously
described. First, the deflection shape ðCi; jÞ is normalized by its root mean square values as
follows:

ci; j ¼ Ci; j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nx � Ny=

XNx

i¼1

XNy

j¼1
jC2

i; j j

r
: ð6Þ
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In this equation, Nx and Ny are the number of x- and y-directional grid points respectively, i and j

are the location indicators for the x- and y-direction, and ci; j (complex number) is the normalized
deflection shape at grid point ði; jÞ: The curvature operating shape is calculated by the central
difference approximation at grid point ði; jÞ as follows:

r2ci; j ¼ ðciþ1; j þ ci�1; j � 2ci; jÞ=h2x þ ðci; jþ1 þ ci; j�1 � 2ci; jÞ=h2y: ð7Þ

In this equation ci; j can be either a mode shape or an operating deflection shape, and hx and hy

are the horizontal and vertical grid increments, respectively. For the grid points on the edges,
forward or backward difference approximations are applied. To obtain a smoothed curvature
shape, the curvature shape obtained by Eq. (7) is expressed as a mathematical form:

r2ci; j ¼ gTi; jhi; j; ð8Þ

where gi; j is the base function vector, which depends on only the locations of the grid points and
hi; j is a parameter vector whose values are estimated later. The elements of the base function
vector should be chosen such that the curvature shape represented by Eq. (8) shows a smooth
surface. In this paper, the base function and parameter vectors are constructed as follows:

gTi; j ¼ ½1;xi; yj�; hTi; j ¼ ½a0; a1; a2�: ð9Þ

Since the base function is known at any grid point and the curvature is calculated by Eq. (7), the
parameters (hi; j) that are also complex numbers can be estimated by an identification method. A
contour plot of an operating curvature shape is shown in Fig. 2. The intersections of the dotted
lines show the grid test points. The open circular symbols show the gapped points in the curve
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fitting, and the black circular marks represent the neighboring points to be used for the parameter
estimation. Then, equation (8) can be arranged into a matrix form:

ki; j ¼ GTi; jhi; j; ð10Þ

where

kTi; j ¼ ½r2ci�1; j�1;r
2ci; j�1;r

2ciþ1; j�1;r
2ci�1; j;r

2ciþ1; j;r
2ci�1; jþ1;r

2ci; jþ1;r
2ciþ1; jþ1�;

GTi; j ¼ fgi�1; j�1; gi; j�1; giþ1; j�1; gi�1; j; giþ1; j; gi�1; jþ1; gi; jþ1; giþ1; jþ1g

in the inner grid points. When the target point is on the edges or corners of the plate, the
construction of the matrix Gi; j is slightly changed to match the neighboring grid points (see
Fig. 2). Note that the number of the parameters should be the same or less than the number of
neighboring points to enable explicit or least-squares estimation of the parameters:

#hi; j ¼ ðGTi; j �Gi; jÞ
�1GTi; jki; j: ð11Þ

Then, the smoothed curvature shape is calculated by using the estimated parameters as follows:

Ci; j ¼ gTi; j
#hi; j: ð12Þ

Finally, the structural irregularity index is calculated:

di; j ¼ jr2ci; j � Ci; j j: ð13Þ

Note that the 2-D GSM is directly applied to complex ci; j in order to reduce noise in di; j since the
imaginary part has higher noise level by about an order of magnitude compared to the real part in
ci; j: Taking absolute values instead of squaring the difference improves the detection algorithm.
The structural irregularity indices can be summed over the obtained modes (when using mode

shape data) or over the measured frequencies (when using operating curvature shape data). This
procedure results in averaged indices ðdA

i; jÞ:

dA
i; j ¼

1

M

Xo¼of

o¼oi

dðoÞi; j; ð14Þ

where o is the frequency (o is the mode number in the case of the mode-averaged irregularity
indices); oi and of are the lowest and highest frequencies used in the averaging procedure,
respectively; M is the number of spectral lines in the frequency range oi and of (M is the number
of experimentally available modes in the case of the mode-averaged method). This frequency
averaging approach has been shown to increase the sensitivity of the damage detection method
[12].
The averaged structural irregularity indices can further be treated statistically. The basic

assumption is that the mean and standard deviation of averaged structural irregularity indices
from the damaged structures in the undamaged area are similar to those from the repeated tests of
an undamaged structure. Since these indices are averaged over frequency, the central limit
theorem suggests that the set of averaged indices will be normally distributed. Thus, outliers from
the normal distribution will be irregularity indices coincident with statistically significant features
such as local damage or stiffness changes. Two outlier detection methods have been widely
accepted over the years—Grubbs and Thompson’s t: The former is used where conservatism is
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important since it rejects fewer points than the latter. The present study adopted Grubbs’ method
that has been adopted by the ISO, ASME, and others [19].
Fig. 3 shows a procedure for the statistical treatment. First, if dA

k denotes the averaged
structural irregularity indices at a grid point k; the maximum normed residual (MNR) is defined
as

MNR ¼ max
k

jðdA
k � mÞ=sj; ð15Þ

where k ¼ 1; 2;y; n and n is total number of grid points; m and s are the sample mean and
standard deviation of the averaged structural irregularity indices, respectively. Next, MNR is
compared to the critical value ðCV Þ for the sample size n:

CV ¼
t � ðn � 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n � ðn � 2þ t2Þ
p ; ð16Þ

where t is the 1� a=ð2nÞ quantile of the Student-t-distribution with n � 2 degrees of freedom. The
significance level of a ¼ 1% and/or 5% is used in the present study [20]. IfMNR is larger than CV ;
the datum associated with MNR is declared to be an outlier; it is removed from the original data
set and the procedure is repeated in the same way with the reduced data set until MNR becomes
smaller than CV : Then, a hypothesis test (the goodness of fit to a normal distribution) is
performed on the reduced data set. If the hypothesis of normality is accepted, the statistical
treatment is finished. If the hypothesis is rejected, the data set can be transformed by some
mathematical processes (for example, by taking logarithms), and the entire data rejection process

ARTICLE IN PRESS

Averaged structural irregularity indices (δA)

Calculate mean (m)
and standard deviation (s)

Max{|(δA -m)/s|} > CV ?
Yes

No

Remove 
an outlier

Plot damage map

Data less than CV Data greater than CV

Normality?
Normal

No

Nonparametric 
outlier detecting methods

Transform δA into normal

No

Normal

Outliers
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is repeated [21]. If normality is not obtained even after the transformation, non-parametric outlier
detecting methods such as the Tchebychev inequality approach are used to detect the outliers [22].
All structural locations with an identified outlier are declared as ‘‘significant’’, and all other

locations have their indices set to zero, yielding a final data set that consists of just the outliers
from the statistical analysis. A structural irregularity contour map of this final data set can then be
plotted.

3. Numerical examples

The 2-D GSM was applied to a 0:610 m� 0:305 m� 0:006 m plate modelled using the
commercial finite element code ANSYS, and the results are presented here. The domain was
discretized with three-dimensional finite elements (Solid95, 20 nodes) of uniform size and the
number of elements was 48� 24� 1: The model had isotropic material properties and all-free-
edge boundary conditions. Note that the present algorithm can be applied to any complex
structure with any boundary conditions, and is not restricted to the demonstrative free boundary
condition problem presented here. A damaged portion was modeled by reducing the modulus of
the element by 30%. Figs. 4 (a)–(c) show Models I, II and III, respectively, with the damaged
region (the reduced modulus area) shown on the plate model. The plate model had a total of 288
ð24� 12Þ grid points with a 0:025 m uniform step in both x- and y-direction. The first grid point
was at the left lower corner (0:012 m; 0:012 m). There is no damage in Model I, and two types of
damage (small and large) are designated in Models II and III. Model II has a small damage size of
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Fig. 4. Specification of the damage in the model plates. (a–c) show the FEA models with/without local modulus

reductions; (d–f) show the experimental composite plates with/without delaminations). (a) Model I, (b) Model II,

(c) Model III, (d) Model IV, (e) Model V, and (f) Model VI.
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0:025 m� 0:025 m; which contains only one grid point. The large damage in Model III has a
0:152 m� 0:101 m size and spans 24 ð6� 4Þ grid points. The detailed specifications of Models I,
II, and III are shown in Table 1, where the x-GP and y-GP represent x- and y-directional grid
points, respectively. For example, x-GP 11.5 means that the damaged location was centered
between grid points 11 and 12. The first six modes of vibration were extracted from the finite
element modal analysis.
Fig. 5 shows the contour plots of the mode shapes for Model II. The mode shapes do not show

any obvious features that can be associated with the damaged area. Fig. 6 shows the contour plots
of the curvature mode shapes obtained by Eq. (7). The curvature shapes are shown in Fig. 6. This
figure shows some features associated with the damaged area, but the features by themselves are
not sufficiently significant to claim they have located the damaged region with any degree of
confidence. The mode shapes for Models I and III are not shown in this paper, since there is
minimal difference between the shapes for Model II and Models I and III. Similarly, the features
in the curvature mode shapes for Model III are too small to identify the damage.
Fig. 7 shows the contour plots of the structural irregularity indices for the individual modes

of Model II using mode shape data, where each mode shows a feature at the damage location.
The figure shows that the flexural (beam-like) modes (1, 4, and 5) are better discriminators
than the shear modes. Fig. 8 shows the contour plots of the structural irregularity indices for
Model III with the large-size damage using the same method. It is worthy of note that when the
damaged area is large, the 2-D GSM locates the edges of the damaged region. This is because
the 2-D GSM uses a local smoothing method that uses only a small number of neighboring
data points [9] around the gapped middle grid point in its surface fitting. Thus, for uniform
damage, analysis that includes grid points only on a damaged region will find no structural
irregularity, and the indices will be small. The 2D-GSM is, thus, an ‘edge-finding’ algorithm.
The flexural modes (1, 4, and 5) also detect the edges of the damage area better than the shear
modes (2, 3, and 6) in the case of Model III. These trends are consistent with the observations
for Model II.
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Table 1

Configuration of composite samples for the local damage detection

Model Dimension (m) Damage type Damage location: Damage size Used grid

length� width� height (x-GP, y-GP) (m) points

Model I 0:610� 0:305� 0:006 No damage NA 0 24� 12
Model II 0:610� 0:305� 0:006 Locally reduced (10, 5) 0:025� 0:025 24� 12

stiffness

Model III 0:610� 0:305� 0:006 Locally reduced (11.5, 5.5) 0:15� 0:10 24� 12
stiffness

Model IV 0:915� 0:610� 0:012 No damage NA 0 18� 12
Model V 0:915� 0:610� 0:012 Circular (11.5, 8) 0.127 18� 12

delamination diameter

Model VI 0:610� 0:457� 0:006 Two square (6, 13.3) 0:025� 0:025 24� 18
delaminations (12.2, 9) 0:087� 0:075

Armor hull ð1:04þ 0:71Þ � 0:91 Dry spot (9.5, 5.5) 0:27� 0:25 12� 8
� ð0:016=0:041Þ
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Figs. 9 (a)–(d) show the contour plots for Models II and III for both the mode-averaged and
statistically treated structural irregularity indices. The mode-averaged index plots accurately
define the location of the small-size damage, and the perimeter of the large-size damage. The
statistical treatment successfully enhanced the plots, further improving the damage location
capability.
Fig. 10 shows a histogram of the mode-averaged structural irregularity indices for three damage

cases with the same geometry; no damage (Model I), small-size damage (Model II), and large-size
damage (Model III). The outlier identification method correctly identified the irregularity indices
for the damaged areas. Also correctly, it did not identify any of the indices from the undamaged
model as outliers. Lilliefor’s test [23] showed that, at the 5% level of significance, the mode-
averaged irregularity indices after elimination of outliers are normal distribution, consistent with
the earlier assumption. Table 2 compares statistics of the mode-averaged structural irregularity
indices with and without outliers. As expected, eliminating the outliers reduces both the mean and
standard deviation and reduces the differences in the mean and standard deviation between
Models I, II, and III.
It is noted that as more modes are added to the averaging process, the sensitivity of the 2-D

GSM increases, and uncertainty reduces. Hence, it is to be expected that better results may be

ARTICLE IN PRESS

5 10 15 20

2

4

6

8

10

12

Y
-g

rid
 p

oi
nt

-2

-1

0

1

2

5 10 15 20

2

4

6

8

10

12

-2

-1

0

1

2

5 10 15 20

2

4

6

8

10

12

Y
-g

rid
 p

oi
nt

-2

-1

0

1

2

5 10 15 20

2

4

6

8

10

12

-2

-1

0

1

2

5 10 15 20

2

4

6

8

10

12

X-grid point

Y
-g

rid
 p

oi
nt

Y
-g

rid
 p

oi
nt

Y
-g

rid
 p

oi
nt

Y
-g

rid
 p

oi
nt

-2

-1

0

1

2

5 10 15 20

2

4

6

8

10

12

X-grid point

X-grid point X-grid point

X-grid point X-grid point

-2

-1

0

1

2

(a) (b)

(c) (d)

(e) (f )
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expected as more modes are included in the summation. However, this FEA analysis did not
include any errors associated with a mode-shape analysis of experimental data. Also, while a
modal extraction from measured data will typically determine the major modes, real structures
may have a very large number of lesser modes that may be omitted from the analysis. However,
the effects of all of these modes are still included in the measured FRF data. This observation
suggests that the broadband version of the 2-D GSM is preferred over the resonant (modal)
version, since the problems associated with the modal extraction are entirely eliminated.

4. Experimental examples

4.1. Laboratory testing

The present method was applied to laboratory vibration tests of three composite plates,
designated Models IV, V, and VI in Fig. 4 and defined in Table 1. Models IV and V were
manufactured from woven E-Glass fabrics ð24 oz=yd2Þ and SC-15 Epoxy resins, and Model VI
was manufactured from woven E-Glass fabrics ð24 oz=yd2Þ and Derakine 411-C-50 Vinyl ester
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resins. All the composite plates were made by the Vacuum Assisted Resin Transfer Molding
(VARTM) process. A circular delamination (Model V) and two square delaminations (Model VI)
were created by inserting Teflon films (0:0254 mm thick) at the mid-plane between layers. Model
IV fabricated without any insert has the same geometry with Model V. The grid points were
marked by a 0:051 m uniform step for the Models IV and V and 0:025 m uniform step for the
Model VI, respectively, in both the x- and y-directions. The composite panels were suspended
with two rubber bungee cords to approximate free-free boundary conditions. This boundary
condition was chosen for simplicity and repeatability of experiments. The free boundary condition
is not a prerequisite for the present method. A hammer with a force transducer was used to excite
each grid point on the plate, and an accelerometer was used to measure acceleration at a corner of
the plate. The acquired time domain signals were converted to the frequency domain by FFT, and
the frequency averaged H1 frequency response functions between each grid point and the
reference accelerometer were determined from three impacts at each test point.
During testing the data quality was predominantly monitored by the coherence functions.

Fig. 11 shows the coherence functions averaged for all test points for Models IV and V. Overall,
the data quality is excellent, with values typically greater than 99% (100% represents perfect,
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noise free data). Based on this figure, the 2-D GSM method was applied to data from the
frequency range 100 Hz to 2 kHz (oi and of in Eq. (14)) for Models IV, V, and VI.
Figs. 12 (a)–(d) show the contour plots of the frequency-averaged and statistically treated

structural irregularity indices for Models IV and V (without and with the circular delamination).
The figure shows that the 2-D GSM successfully located the circular delamination, and the
statistical treatment enhanced the result. As expected, the raw results for the plate without a
deliberate delamination did not show any significant structural features. At the 5% level of
significance the statistical treatment did not find any features on the plate without delaminations.
Fig. 13 shows histogram of the frequency-averaged irregularity indices for Model IV and V.

The outlier identification method only detected the outliers in the damage region for Model V,
and did not detect any outliers for Model IV. Lilliefor’s test [23] showed that the hypothesis of
normality was acceptable for all cases with significance level 1%. The statistics for Models IV and
V are shown in Table 2.
Figs. 14 (a)–(d) show the contour plots of both the frequency- and mode-averaged structural

irregularity indices with and without statistical treatment for Models VI that included two square
delaminations of different sizes. The figure shows that both delaminations were detected using the
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frequency-averaged version of the 2-D GSM, and the features on the plot were enhanced by the
statistical treatment (at the 5% level of significance). Although not shown in the figures, reducing
the level of significance to 1% enhanced the larger delamination feature, but suppressed the
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smaller delamination. This shows the potential of the 2-D GSM to discriminate between areas
with different levels of damage. The mode shape version of the 2-D GSM failed to detect the
small-size delamination, even at the 30% level of significance. It is speculated that this may be
because of the problems associated with the experimental modal parameter extraction. This result
further confirms the previous observation that using the frequency-averaged operational
deflection shape method offers less possibility of loosing essential information and gives increased
sensitivity when compared to the modal method.
The results in Fig. 14 are based on the assumption that the averaged structural irregularity

indices form normal distributions, but the normality test was rejected even with 1% significance
level. When the Tchevychev inequality outlier detecting method [22] was applied to the averaged
structural irregularity indices, both methods using ODS and mode shape data detected only the
large-size delamination. Locating the small-size delamination was challenging for both methods.
More refined grid spacing may increase sensitivity in detecting small-size damage. The
relationship between grid spacing and defect size is a topic for further research.

4.2. Large-scale composite structure testing

The present method has also been applied to the large composite hull structure shown in
Fig. 15. During VARTM processing, one area of the fabric was not properly infiltrated with resin
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Table 2

Statistics of the average structural irregularity indices with and without outliers

Data type Model Original data Data without outliers

Mean Std. Mean Std.

FEA Model I 3.88 1.31 3.88 1.31

Model II 4.03 1.71 3.88 1.30

Model III 4.50 2.95 3.88 1.55

Experiments Model IV 213.13 60.14 213.13 60.14

Model V 231.42 83.86 225.68 68.20
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and a dry spot was formed. This dry spot consisted of only a few surface layers of the thick
section, on the back surface, and it could not be seen from the front surface (see Fig. 16). Grid
points were marked with a 0:075 m uniform increment in both x- and y-directions. For testing, the
hull structure was suspended on rubber bungee cords. The primary reason for the test was to
obtain a modal model, with the 2-D GSM analysis being secondary. Therefore, data were
measured from more test points than were used for the 2-D GSM analysis. Fig. 17 shows the test
mesh and one of the identified mode shapes. The area inside the dotted line shows the region
that was used for the 2-D GSM analysis. Figs. 18 (a)–(d) compare the results from the 2-D GSM
mode shape and operating deflection shape algorithms. In the figure the dotted square line
highlights the physical location of the dry spot area. Both methods successfully detected the dry
spot. However, the method using the operating deflection shape algorithm showed better
discrimination, with less ‘‘noise’’ in the undamaged areas when compared to the method using the
mode shape data. The results in Fig. 18 are based on the normality assumption, which was also
rejected with 1% significance level. However, both the operating deflection shape and mode shape
methods detected only the middle partial area of the dry spot when the Tchevychev inequality
method was used. Note that the Tchevychev inequality method has tougher criterion in detecting
outliers [19].
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5. Conclusions

In this paper, the one-dimensional gapped smooth method was successfully extended to two-
dimensions, enabling regions of stiffness variability to be located in plate-like structural applications.
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A finite element model was used to assess the performance of the algorithm under idealized
conditions. Experimental studies included composite plates having single and multiple delaminations
of different sizes, and a composite hull structure that had a manufacturing defect on the surface.
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Fig. 15. VARTM manufacturing process of the composite hull structure.

Fig. 16. Pictures of both surfaces of the composite armor hull structure. (a) Inside surface, and (b) outside surface.

Fig. 17. Excitation grid points and an example of a mode shape for the composite armor hull structure (only the data

obtained from the grid points in the dotted square are used in the damage detection algorithm).
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The present method detected the size and locations of small, localized stiffness reductions.
When the structure (excluding the effects of damage) was globally homogeneous, and the damage
area was small compared to the total testing area, the features located by the method were
coincident with damage. This ability to locate the features was achieved without the need for
either a mathematical model or a baseline test of the structure. This was possible because the
underlying structure was homogenous and uniform with respect to stiffness, except for the areas
of deliberately induced damage. In the case of large areas of uniform damage (compared to
spacing and number of inspection points), however, the present algorithm identified the edges of
the damage, which could make interpretation of the results more difficult. The results using the
broadband operating deflection shape data showed superior performances over those using the
resonant data (mode shapes) because the former method has more data points to average and less
possibility to lose information in a modal parameter extraction. The structural irregularity indices
were summed with respect to frequency or mode in order to increase sensitivity. The statistical
treatment developed in the paper enhanced the ability to locate regions with stiffness variability.
The presented algorithm has direct applications for quality assurance/quality control and NDI

of composite structures. Further studies are required to establish a quantitative relationship
between the local stiffness reduction and the irregularity indices.
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